
The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi Clinic
Editor, on 76004.3437@compuserve.com

or write/fax us at The Delphi Magazine

Multimedia Help

QI came across the routine
sndPlaysound in a Delphi

book and as I’m interested in
including sound effects in my
programs I tried to look it up in the
Delphi API help. For some reason it
isn’t shown. Can you throw any
light on this?

AsndPlaySound is a multimedia
routine. The multimedia API

(as declared in the MMSystem unit) is
not considered part of the core
Windows API and so lives in its own
help file. This is file \DELPHI\BIN\

MMSYSTEM.HLP in Delphi 1 or in
Delphi 2 \Delphi2.0\Help\MM.HLP.
Delphi 1 does not search through
the multimedia help file (Delphi 2
does), though you can add it as
another help icon in your Delphi
Program Manager (or Windows
Explorer) group.

Waiting For DOS

QI need to call a DOS program
in order to get some data

which I can then process for out-
put. I need to wait for the DOS pro-
gram to terminate, because I will
read its output and if I try to read
the file before it gets closed, I get a
sharing violation. How can I be sure
that the DOS program has finished?
I do not want to ask the user to
push a button when it has finished
– that is very inelegant.

AThe most common approach
to doing this is, instead of

running the DOS .EXE, you run a
batch file in the same directory.
The batch file’s job is to write a file
to the disk, run the DOS .EXE, and
then delete the file.

Your program uses WinExec to
run the batch file, then does a

Windows-friendly loop until the file
exists (or some timeout occurs, or
the user gets bored and terminates
your app). When the file appears,
you presume the program has
started. You then do another loop
waiting for the file to disappear.
When that loop terminates, the
program and the batch file have
finished. An example batch file
would look like:

@echo off
echo Semaphore > semafore.dat
command.com
del semafore.dat

A routine to use the batch file could
look like Listing 1.

Notice that the batch file isn’t
executed directly, but via a DOS
command shell. This means that
when it terminates the DOS win-
dow will close automatically (pre-
suming the Windows session has
that option enabled).

Incidentally, there are plenty
more ways of detecting when a
program has finished given in The

Revolutionary Guide To Delphi 2
(which also covers version 1) by
various authors, published by
Wrox Press, ISBN 1-874416-74-5.
[OK, Brian, plug permitted, but you
owe me a pint from the royalties...
Editor].

OnExit And The Lost Caret

QI do validation of TEdit and
TDBEdit controls in their

OnExit handlers. If there is a prob-
lem, I show a message box. How-
ever, the edit control that should
then receive focus has no caret,
although text can still be typed in.
The caret won’t come back until
another normal focus change
occurs.

AThis problem occurs with
most 16-bit Windows

programming tools. If you invoke a
dialog when focus is being
switched to edit controls, the caret
gets lost. Win32 fixes this. Princi-
pally, the workaround in a 16-bit
program is to set focus back to the

procedure TForm1.Button1Click(Sender: TObject);
var
 OldTime: TDateTime;
const
 Startup = 5;
 Semaphore = ’semafore.dat’;
begin
 WinExec(’command.com /C \temp\delme.bat’, sw_ShowNormal);
 Button1.Enabled := False;
 OldTime := Time;
 repeat
 Application.ProcessMessages
 until Application.Terminated
 or (Time > OldTime + EncodeTime(0, 0, Startup, 0))
 or FileExists(Semaphore);
 if FileExists(Semaphore) then begin
 repeat
 Application.ProcessMessages
 until Application.Terminated or not FileExists(Semaphore);
 if not FileExists(Semaphore) then
 ShowMessage(’It’’s finished!’);
 end;
 Button1.Enabled := True;
end;

➤ Listing 1

56 The Delphi Magazine Issue 9

control losing focus. So instead of:

procedure TForm1.Edit1Exit(
 Sender: TObject);
begin
 ShowMessage(’No!’);
end;

you use:

procedure TForm1.Edit1Exit(
 Sender: TObject);
begin
 ShowMessage(’No!’);
 if Sender is TEdit then
 TEdit(Sender).SetFocus;
end;

Error-Free
Custom Open File Dialogs

QI am trying to implement my
own file open dialog using a

TDirectoryList, TFileListBox and
TDriveComboBox. I experience three
problems. Firstly, whenever I try
and go to drive A: when there is no
floppy in the drive, I get the
Windows system error message.
This one I can fix using the
SetErrorMode tip in Issue 7’s Clinic.
When I get rid of this, I get a Delphi
EInOutError exception (invalid file-
name) instead. I can’t see any place

unit Newctrls;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics,
Controls,
 Forms, Dialogs, StdCtrls, FileCtrl;
type
 TDriveErrorEvent = procedure(Sender: TObject;
 var Retry: Boolean) of object;
 TNewDriveCombo = class(TDriveComboBox)
 private
 FOnDriveError: TDriveErrorEvent;
 protected
 procedure Click; override;
 published
 property OnDriveError: TDriveErrorEvent
 read FOnDriveError write FOnDriveError;
 end;
procedure Register;
implementation
procedure TNewDriveCombo.Click;
var
 OldDrive, NewDrive: Char;
 Ouch, Retry: Boolean;
begin
 OldDrive := Drive;
 if Items.Count > 0 then
 NewDrive := Items[ItemIndex][1];
 Ouch := False;
 { If there’s a problem (empty floppy for example)
 stop any exception message being printed }
 try
 inherited Click;
 except
 on E: EInOutError do
{$ifdef Windows}
 { DOS gives error 3 (Path not found)
 if drive not ready on a directory change }
 if E.ErrorCode = 3 then

{$else}
 { Win32 gives error 21 (Device not ready) if drive
 not ready; this is more precise - there is an
 equivalent error 3 defined. For a list of Win32
 errors, (albeit with missing characters) look up
 “error codes”, “Error Codes (Win32 Programmer’s
 Reference)” }
 if E.ErrorCode = ERROR_NOT_READY then
{$endif}
 { Signal to later code that a problem occurred }
 Ouch := True;
 end;
 if Ouch then
 repeat
 try
 { Set back decent drive first }
 Drive := OldDrive;
 { Then check for a retry }
 Retry := False;
 if Assigned(FonDriveError) then
 FOnDriveError(Self, Retry);
 if Retry then
 { Try setting target drive again }
 Drive := NewDrive;
 { If no exception occurs, we’re done
 so set loop terminator }
 Ouch := False;
 except
 { Mask the potential problem }
 on E: EInOutError do
 if E.ErrorCode = 3 then;
 end;
 until not (Ouch and Retry);
end;
procedure Register;
begin
 RegisterComponents(’Samples’, [TNewDriveCombo]);
end;
end.

to put a try..except block, as the
exception occurs inside one of the
components, and I am not using
any code to manipulate them. The
last problem occurs if I do success-
fully log onto the A: drive, take the
floppy out, and try and go to
another drive. This causes the
same exception to happen from
that point on.

AThere are a number of prob-
lems here. The Windows

modal error message can indeed
be removed by using SetErrorMode
as shown in the Windows File Errors
Delphi Clinic entry you refer to.
The other two are less easy.

The exception when going to
drive A: can be trapped in a new
component derived from TDrive-
ComboBox. The exceptions when go-
ing from drive A: unfortunately
need two VCL changes (or one if
you are using Delphi 2).

Let’s take the new drive combo
component for now. The exception
that needs trapping occurs when
the drive is changed. If this is being
done visually, then that must mean
when the drive entry in the drive
combo is changed. Whether this is
done by mouse or keyboard, the
virtual Click method executes, so
we can override this and trap the
exception. In my component I have

tried to make it flexible by adding a
new event which is triggered when
a drive error occurs. This allows
the drive combo user to add code
to invoke a retry/cancel dialog (see
Figure 1).

The fly in the ointment comes
when trying to cater for both
Delphi 1 and 2. When the problem
occurs in Delphi 1, an EInOutError
exception, code 3, is raised. In
Delphi 2 it is still an EInOutError
exception, but code 21. To try and
ensure I am only trapping the par-
ticular problem I want, I have used
conditional compilation to check
for the right code number. The
TNewDriveCombo is shown in Listing
2. Install this into your component
library in the usual way.

The last problem needs a fix or
two to the VCL. When the file and
directory list boxes are trying to go
somewhere else, for some reason
they first try and change to the
current directory. If there is no
floppy in the drive, this will cause
an exception to occur each time
you try and change drive. In Delphi
2 a fix has been applied to the
directory list box, but not to the file
list box. Fixing the file list is more
important for the visual use of
these components, but to cater for
programmatic use, we need to fix
both.

➤ Listing 2

58 The Delphi Magazine Issue 9

In FILECTRL.PAS, locate the rou-
tine TFileListBox.SetDirectory and
also TDirectoryListBox.SetDir and
change ChDir(FDirectory); to:

{$ifdef BROKEN}
 ChDir(FDirectory);
{$else}
 {$I-} { ignore errors }
 ChDir(FDirectory);
 {$I+}
 if IOResult = 0 then
 ; {clear error }
{$endif}

Do this for both routines. Once
both these changes are made, copy
the file into your \DELPHI\LIB
directory and re-compile your
project.

A project to show a rather more
safe error box (providing the fixes
described have been applied, and
the new component has been
installed) than you would normally
get is given in TESTDLG.DPR on the
disk. OPENDLGU.PAS implements
the open dialog form and the drive
combo’s OnDriveError handler
allows the user to retry if a drive is
not available.

➤ Figure 1

Multiple Choice Help Files

QI have an application that
uses a help file. I know that

when the HelpFile option is set up
in the project options dialog on the
Application page, Delphi adds a
statement to the project source:

Application.HelpFile :=
 ’HELP.HLP’;

The problem is that I will be replac-
ing the help file each month with a
different one (HELP0196.HLP,
HELP0296.HLP etc) and wish to be
able to do this without changing
the Delphi program. Can I give wild
cards to Application.HelpFile?

ANo you can’t. But we can
solve your problem. You can

search for an appropriate help file
first, and if you find one, assign its
name to Application.HelpFile. For
example, you could add the code in
Listing 3 into your main form’s
OnCreate handler.

Note the use of FindClose. In
Delphi 1 this does nothing, but us-
ing it sets us up for Delphi 2 which

does require it. Delphi 1 uses DOS
interrupts to do file searching,
which require no tidying up,
whereas Delphi 2 uses the Win32
API which has very specific needs.

Oracle SQL*Net 2
And SQL Links

QI can connect to Oracle using
SQL*NET 1 but am having no

joy with SQL*NET 2. How do I set
up the Oracle SQL Link to talk to
version 2?

AUnfortunately, the documen-
tation assumes version 1 and

so doesn’t help much. But you can
connect with version 2 by using
these guidelines.

Either specify your TNS (Trans-
parent Network Substrate) alias as
the server name and specify the
network protocol to be TNS, or use
@TNS:<TNS Alias> for the server
name (do not include the angle
brackets) and leave the network
protocol blank.

Broken Minimising Behaviour

QIn Delphi 2, a normal pro-
gram will minimise correctly

into the taskbar. However, if you
set your main form’s WindowState
property to wsMinimized, when the
program starts the form is mini-
mised like an MDI child, sitting at
the bottom of the desktop. Is there
a fix available?

ARoy Nelson at Borland sug-
gests the following. Declare a

method FormRestore in your form
class’s public section, then add an
OnCreate handler for the form. Set
FormRestore and FormCreate up as
shown in Listing 4.

Synchronised Listboxes

QI’m trying to get two list-
boxes to synchronise their

scrolling. In other words when one
is scrolled, I want the other to
scroll to the same place. There
doesn’t seem to be an appropriate
event to help me out here.

AYou’re right – we’ll have to
make one. Or two as it turns

procedure TForm1.FormCreate(Sender: TObject);
var SearchRec: TSearchRec;
begin
 if FindFirst(’HELP????.HLP’, faAnyFile, SearchRec) then
 Application.HelpFile := SearchRec.Name;
 FindClose(SearchRec);
end;

➤ Listing 3

May 1996 The Delphi Magazine 59

out. Principally, we need to trap
whatever Windows message is sent
when the listbox scrolls. Unfortu-
nately it’s not just one message.
When the scrollbar is dragged
around with the mouse, a
wm_VScroll message is sent to the
listbox and the listbox’s view of its
contents changes (although the fo-
cused item does not change). The
online help for this message dis-

cusses the information that comes
along with this message.

If the user clicks on a listbox item
and drags the mouse up or down,
this can also cause scrolling, but
the wm_VScroll message does not
get sent under these circum-
stances. Similarly, if the user uses
the arrow keys, or Page Up/Down, or
Home or End, the listbox can scroll
but no wm_VScroll message is seen.
Instead, in these other circum-
stances, a component notification
message is sent to the listbox – this
is a cn_Command message with a
lbn_SelChange parameter, ie the
listbox selection has changed.

The component implemented in
SLISTBOX.PAS and shown in List-
ing 5 traps both these messages
and triggers events (OnScroll and
OnSelChange) for them, if they have
been set up. A user of a TSListbox
component can make event han-
dlers for these events and set any
other listbox up to match its cur-
rent state. The project LIST-
BOX.DPR does just this. It has two
SListboxe controls side by side,
and they mimic each other. Both
share OnScroll and OnSelChange

event handlers, and in the case of
the latter event handler I have
offered two choices of code to use.

Listing 6 shows the two event
handlers from LISTBOXU.PAS.
When an OnScroll event occurs, the
TopIndex property of the mimic
listbox is set to that of the scrolled
listbox. That caters for the scroll-
bar. Bearing in mind there are two
versions of the OnSelChange han-
dler, the first one simply does the
same as the OnScroll handler,
ensuring that both listboxes scroll
to the same place.

The second one is a bit more
adventurous and makes sure the
selections in each listbox mimic
each other, catering for both sin-
gle-selection and multi-selection
listboxes. The former one will be
compiled by default. To see the
second one, remove the $define
compiler directive at the top of
Listing 6 and re-run.

Acknowledgements
Thanks to Roy Nelson for the
Delphi 2 minimisation fix and also
to Steve Axtell for the Oracle
connection information.

TForm1 = class(TForm)
...
public
 procedure FormRestore(
 Sender: TObject);
end;
...
procedure TForm1.FormRestore(
 Sender: TObject);
begin
 Perform(
 wm_SysCommand, sc_Restore, 0);
 Application.OnRestore := nil;
end;
procedure TForm1.FormCreate(
 Sender: TObject);
begin
 if WindowState =
 wsMinimized then begin
 Application.ShowMainForm :=
 False;
 Application.OnRestore :=
 FormRestore;
 Application.Minimize;
 end;
end;

➤ Listing 4

unit Slistbox;
interface
uses
 Messages, Classes, Controls, StdCtrls;
type
 TScrollEvent = procedure(
 Sender: TObject; ScrollCode, Pos: Word) of object;
 TSListbox = class(TListBox)
 private
 FOnScroll: TScrollEvent;
 FOnSelChange: TNotifyEvent;
 protected
 procedure WMVScroll(var Msg: TWMVScroll);
 message wm_VScroll;
 procedure CNCommand(var Msg: TWMCommand);
 message cn_Command;
 published
 property OnScroll: TScrollEvent
 read FOnScroll write FOnScroll;
 property OnSelChange: TNotifyEvent
 read FOnSelChange write FOnSelChange;
 end;

procedure Register;
implementation
procedure TSListbox.WMVScroll(var Msg: TWMVScroll);
begin
 inherited;
 if Assigned(FOnScroll) then
 FOnScroll(Self, Msg.ScrollCode, Msg.Pos);
end;
procedure TSListBox.CNCommand(var Msg: TWMCommand);
begin
 inherited;
 if (Msg.NotifyCode = lbn_SelChange) and
Assigned(FOnSelChange) then
 FOnSelChange(Self);
end;
procedure Register;
begin
 RegisterComponents(’Samples’, [TSListbox]);
end;
end.

➤ Below: Listing 6

{$define SIMPLE}
procedure TForm1.ListboxScroll(
 Sender: TObject; ScrollCode, Pos: Word);
begin
 if Sender = SListbox1 then
 SListbox2.TopIndex := SListbox1.TopIndex
 else
 SListbox1.TopIndex := SListbox2.TopIndex;
end;
{$ifdef SIMPLE}
procedure TForm1.ListboxSelChange(Sender: TObject);
begin
 ListboxScroll(Sender, 0, 0);
end;
{$else}
procedure TForm1.ListboxSelChange(Sender: TObject);
var
 Loop: Word;
 Src, Dest: TListbox;

begin
 { Set up Src and Dest as original and mimic }
 Src := Sender as TListbox;
 Dest := SListbox1;
 if Src = Dest then
 Dest := SListbox2;
 with Src do begin
 { Stop destination from flickering as we update it }
 Dest.Items.BeginUpdate;
 { Make multi-selections match in both listboxes }
 if Dest.MultiSelect then
 for Loop := 0 to Pred(Items.Count) do
 Dest.Selected[Loop] := Selected[Loop]
 else
 Dest.ItemIndex := ItemIndex;
 Dest.TopIndex := TopIndex;
 Dest.Items.EndUpdate;
 end;
end;
{$endif}

➤ Above: Listing 5

60 The Delphi Magazine Issue 9

	Multimedia Help
	Waiting For DOS
	OnExit And the The Lost Caret
	Error-Free Custom Open File Dialogs
	Multiple Choice Help Files
	Oracle SQL*Net 2 And SQL Links
	Broken Minimising Behaviour
	Synchronised Listboxes
	Acknowledgments

